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Chapter 1

The sine wave

1.1 What is sin(15°)?

This is the sort of question you might see on a YouTube thumbnail while

doom-scrolling maths educational videos(shoutouts to blackpenredpen).

At �rst, it seems like you'll have to pull out some special triangle, and indeed

you can do it that way, but some simple algebraic facts can also get the

answer:

sin(2 ∗ 15◦) = 0.5 = 2sin(15◦)cos(15◦)

sin2(15◦) + cos2(15◦) = 1

Solving these equations(and being careful about the minus signs) you can

arrive at the answer:

sin(15◦) =

√
2−

√
3

2
(1.1)

OK bro that's cool I guess. Time to go to bed...

1.2 Enough sine identities forever

But hold up, the only special about 15°is that it's half of 30°and we knew

the value of sin(30°). But now we know the value for 15°, we could �nd 7.5°,

and when we know that, we could �nd 3.75°and forever more!
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In general, the algebra looks like:

sin(2x) = 2sin(x)cos(x)

sin2(x) + cos2(x) = 1

We solve that and get

sin(x) = ±
√

1− cos(2x)

2
(1.2)

Where the ± depends on if we are on a hump or on a dip.

We can simplify this to

sin(x) =

√
1 + sin(2x)±

√
1− sin(2x)

2
(1.3)

Where now the ± �ips in bands of size π
2 (check this yourself to see what I

mean).

What's neat about this is that we have expressed the smaller sine in terms

of values of sine that we know. For example:

sin(7.5◦) =

√
1 + sin(15◦)−

√
1− sin(15◦)

2
(1.4)

So now we can make in�nitely many YouTube click-bait thumbnails. Nice!

1.3 Going down the well

As we repeat this process more and more, you'll notice that the angles get

smaller. Whenever you hear small angles and sine you will immediately think

of

sin(x) ≈ x if x is small and in radians.

So, now for a key idea: If we apply this rule to the process above, we can

express small numbers as extremely messy radicals. Wait, what's the point

of that?! Because those small numbers will be in terms of π, and maybe we

could then solve for π and get a neat approximation. So let's go for it.

So let's start with a known value of sine: sin(π6 ) =
1
2
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To make the notation simpler, let's de�ne this as a sequence of reals xn.

So we have x0 =
1
2

Then, from (1.3), we have:

xn+1 =

√
1 + xn −

√
1− xn

2
(1.5)

Let's remember that xn = sin( π
3 ∗ 2n+1 )

So, when n is big, we have:

xn ≈ π
3 ∗ 2n+1

⇒ 3 ∗ 2n+1 ∗ xn ≈ π

⇒ limn→∞(3 ∗ 2n+1 ∗ xn) = π (1.6)

"POLICE!! STOP RIGHT THERE!!!"

Oh no! It's the maths police. They aren't happy because these limits aren't

to code.

"HEY!! You can't just re-arrange things like that when you've got ≈ signs

in the mix!!!"

OK OK I'll prove it o�cer. Lucky for me, there is a nice geometric way

of seeing this. If you think about what 3 ∗ 2n+1 ∗ xn means, it's essentially

packing 3 ∗ 2n+1 triangles into half of a circle and adding up the side lengths

of the opposite side.

On each step, we double the number of triangles. Here it is shown going

from 6 to 12 triangles(note our sequence starts with 12 but I drew 6 for

simplicity):
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The sides in red are the sines of those triangles, and by multiplying by

3 ∗ 2n+1 we are adding up all of the little triangles. As we keep on doubling

the number of triangles, the total length of the red sides will approach the

circumference, which is 2π for this unit circle. So half of that will add up to

π.

This is like Archimedes' method, except with jagged edges. And if we imag-

ine trying to rotate each edge by its centre, so that it's normal is facing

radially outwards, the edges would not connect. Therefore, we have shown

additionally that 3 ∗ 2n+1 ∗ xn < π for all n. The algebraic way to see this

is that sin(x) < x for π > x > 0. Since x is in radians, it is the arc length,

thus our sides are smaller than the arc length they cover. So this is our �rst

theorem:

Theorem 1. If x0 =
1
2 and xn+1 =

√
1 + xn −

√
1− xn

2 .

limn→∞(3 ∗ 2n+1 ∗ xn) = π (1.5)

and

3 ∗ 2n+1 ∗ xn < π (1.7)

"OK citizen, move along."

Phew! What a close one!
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If you were to look at that theorem without hearing all that preamble, you

would probably be a bit amazed and puzzled as to how π �ts in there. By

naming it as xn we have hidden away the mechanism, but at the same time,

the sine function need not exist to de�ne this sequence.

1.4 A tangent

Well you know what other function has a nice small angle approximation?

Tangent! So you might think to try this process on that, and indeed it works.

Skipping all the boring algebra and starting with tan(π4 ) = 1, we get:

Theorem 2. If x0 = 1 and xn+1 =

√
1 + x2n − 1

xn .

limn→∞(2n+2 ∗ xn) = π (1.8)

and, since π
2 > x > 0 ⇒ tan(x) > x,

2n+2 ∗ xn > π (1.9)

OK and for completeness, what about cos? Well that has a nice half angle

formula:

cos(x) =

√
1 + cos(2x)

2
(1.10)
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So now we need to be careful since there isn't a nice geometric interpretation

of what we are going to do.

Let x0 = cos(π3 ) = 0.5

Now we get the sequence xn+1 =
√

1 + xn
2 .

For our small angle approximation we could use cos(x) ≈ 1 but this will only
tell us our sequence tend to 1(which is kind obvious) and won't give us an

approximation for π. So we need to use cos(x) = 1 − x2

2 + δ(x3), we use a

small delta to keep track of the error.

xn = cos( π
3 ∗ 2n )

⇒ xn = 1− π2

2(3 ∗ 2n)2
+ δ(2−3n)

⇒ π2 = 2(3 ∗ 2n)2(1− xn) + δ(2−n)

⇒ π2 = 3 ∗ 2n
√

2(1− xn) + δ(2−n)

So by taking limits as n goes to in�nity, we get:

Theorem 3. If x0 =
1
2 and xn+1 =

√
1 + xn

2 .

limn→∞(3 ∗ 2n
√
2(1− xn)) = π (1.11)

and, since cos(x) > 1− x2

2 (except x = 0),

3 ∗ 2n
√
2(1− xn) < π (1.12)

However, if you examine this theorem then it's really the same as the �rst.
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Inverse functions

2.1 More trig

Let's think back to Theorem 1. The identity for π dropped out when we

started with the known value of sin(π6 ) = 1
2 and then, from our iteration

process, we were able to remove the sine function and get /pi on it's own.

We could try obtaining slightly di�erent versions of this identity by choosing

di�erent starting values, but what if we started with some arbitrary value

x ∈ (−π
2 , π2 )?

Let's say we have: sin(x) = y and let x0 = y with the same recurrence

relation as in Theorem 1. Then we get:

xn = sin( x
2n

)

⇒ xn = x
2n

+ δ( x
2

22n
)

⇒ limn→∞(2n ∗ xn) = x (2.1)

Remember that xn is a sequence based solely on y so we have found a way

to invert sine using this recurrence relationship.

Why doesn't this work when x is outside of the range (−π
2 , π2 )? Because

the recurrence relation for xn is from the half angle formula for sine. This

relation only holds in the range (−π
2 , π2 ) unless we �ip the sign. Since we

are keeping the sign �xed, then the statement xn = sin( x
2n

) only holds with

x ∈ (−π
2 , π2 ).
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This gives us a generalisation of Theorem 1:

Theorem 4. If f(x) =

√
1 + x−

√
1− x

2 .

limn→∞(2nfn(x)) = arcsin(x) (2.2)

and, for all non-zero x:

|2nfn(x)| < |arcsin(x)| (2.3)

(Note: fn(x) means f(x) nested n times.)

We can do the same generalisation to theorem 2:

Theorem 5. If f(x) =

√
1 + x2 − 1

x .

limn→∞(2nfn(x)) = arctan(x) (2.4)

and, for all non-zero x:

|2nfn(x)| > |arctan(x)| (2.5)


